本文共 1713 字,大约阅读时间需要 5 分钟。
为了确定是否存在一个正整数 ( k ) 使得矩阵 ( a^k ) 是严格正的,我们需要分析矩阵所表示的有向图的强连通性。具体来说,我们需要判断该图是否为强连通图。
#include#include #include #include #include using namespace std;const int MAX_N = 2002;const int MOD = 1e9 + 7;const int INF = 0x3f3f3f3f;vector > adj(MAX_N); int DFN[MAX_N], LOW[MAX_N], s = 1, top = 0, cnt = 0; bool visited[MAX_N]; stack stack; void dfs_iterative(int u) { stack.push(u); int index = 0; while (!stack.empty()) { int v = stack.top(); if (v != u && DFN[v] != 0) { stack.pop(); continue; } if (DFN[v] != 0) { if (LOW[u] > DFN[v]) LOW[u] = DFN[v]; continue; } DFN[v] = top++; LOW[v] = top++; visited[v] = true; if (index == 0) { index = 1; } else if (index == 1) { index = 2; } else { stack.push(u); index = 0; continue; } for (int i = 0; i < adj[v].size(); ++i) { int to = adj[v][i]; if (!visited[to]) { stack.push(to); index = 0; } else if (DFN[to] != 0 && !visited[to]) { if (LOW[u] > DFN[to]) LOW[u] = DFN[to]; } } } } int main() { int n; read(n); for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { int x; read(x); if (x > 0) { adj[i].push_back(j); } } } for (int i = 1; i <= n; ++i) { if (!visited[i]) { dfs_iterative(i); if (LOW[i] == DFN[i]) { cnt++; } } } if (cnt == 1) { cout << "YES" << endl; } else { cout << "NO" << endl; } return 0; }
adj。该方法通过图论中的强连通性检测,确保了算法的正确性和高效性,能够在较大规模的输入下快速得到结果。
转载地址:http://jkkiz.baihongyu.com/